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FIG. 5. Dimensionless coolant or heat flow as a function 
of physical parameter involving absorbed incident radiation. 

region having a free boundary can then be utilized to obtain 
results for a related porous cooled problem. In this way 
a porous region shape is obtained that will provide proper 
cooling for a specified beat flux variation along a surface 
while mainta~~g a specified uniform surface temperature. 
A two-dimensional example is given where a surface is 
subjected to thermal radiation from one direction. The 
analysis applies for three dimensions, but the example is 
limited to two dimensions because conformal mapping is 
used to obtain the free boundary shape. 
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NOMENCLATURE 

solution of C ec’ erk C = i/(&/x): 
constant in R = C,t”; 
constant in 6, = C&t,): 

% specific heat capacity; 
F@, (p,p’,y, t’), function defined in text as (1 - 6+); 
h latent heat of vaporization; 
h; surface heat transfer coefficient at 

interface between liquid and vapour: 
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k, 
?n 

n, 
Pr. 

(4/A). 
R. 

t, 
T. 

V, 
Y. 

integral defined in text: 

Jakob number (p,lp,.)(c,,(T - 7L,,)/h,,): 
Suffix w or b applies to 7: 

thermal conductivity: 

CZPr: 
exponent in R = ~‘,t”: 
Prandtl number (~‘2); 

heat flux: 

radius of bubble: 

time : 
temperature: 

volume: 
length coordinate (normal distance 

from liquid-solid interface): 

thermal diffusivity (~/PC,) of liquid; 

kJV&,); 
thickness of microlayer: 

A numerical calculation has been carried out [9] which 

determines the rate ofevaporation from an initially stationary 

microlayer. avoiding these simplifications. and the results 

are presented here. Wide ranges of possible combinations of 

properties of wall and fluid are covered by considering 
appropriate ranges of dimensionless groups, 

The aim was to provide a basis from which calculations of 

bubble growth can be made. by methods such as [h. 71. 

without any need to simplify this part of the analysis. For 

such purposes it is preferable that the results should be an 

analytic expression, rather than a graphical or tabulated 

computer output. In a few cases. which are extreme or are 

special in some other way, there are exact analytic solutions. 

By taking these as a basis, it has proved possible to set up a 

single analytic expression which represents all cases within 

a wide range. with an error ( & 15 per cent) which is generally 

less than the other errors involved in incorporating this 

element into a theory of bubble growth 

\‘, 

P. 

“1, 
c,STwu - T,,,): 

W/A), --: 
UT,,, - Tsa,) 
kinematic viscosity; 

density. 

FORMULATION OF ONEDIMENSIONAL MODEL 

The equations and initial and boundary conditions 

governing the one-dimensional flow of heat through a solid 

and evaporating liquid as developed in [6] and [9], are 

presented in the appendix in non-dimensional form. At 

least four non-dimensional groups are involved, and the 

following are convenient: 
Suffices 

b, 

9, 
I, 

1, 
111, 

0, 

s, 
sat, 

0, 

w, 

bulk liquid; 

growth: 

interface, liquid-vapour: 

liquid; 

microlayer; 

initial: 

solid; 

saturation: 

vapour; 

wall surface. 

+$!!!!+, the dimensionless wall heat flux 
I WI, at 

k, 

’ h,K, 

IT HAS been shown 

INTRODUCTION 

[1] that when bubbles of vapour form 

The equations have been solved numerically for a wide 

range of these four groups, and the results are presented 

dimensionlessly in terms of reduction in microlayer thick- 

ness (1 - 6’) where 6+ = 6/1i, against time r+ (=zt/Si). 
These results are taken to define a function F(1. 4, fi*. ;‘. t ’ i 
= (1 - 6+), and three typical sets of graphs are presented 

here in Fig. 1. More detailed results were presented in [6]. 

for 1 = 5, 50. 4 = 0.03, 0.3, p’ = 1, 10. 1000 and 7 = 0. 

In [S] the range was extended to include fi” = 0 and X. 

In [q and [S] computed values of wall temperature (Tz) 

as a function oft+ were also presented, and these compare 

favourably with experimentally measured wall temperature 

transients reported in [lo]. In [9] an intermediate value 

of 15 was included for I, the range of Cp was extended to 1.0 
and the effect of 7 was included, taking values 0.03 and 0.3. 
Selectionofthesevaluesforyinvolved thecurrent uncertainty 

during boiling of a liquid at a heated flat wall, the rate of 

growth ofthe bubbles is in some cases influenced by evapora- 

tion from a thin layer of liquid (the microlayer) which forms 

beneath the bubble. Early calculations of that evaporation 

[2-81 have all assumed the microlayer to be initially 
stationary and also used two or more ofthe following simpli- 

lications when determining the rate of flow of heat from the 

wall through the microlayer: 
neglecting the thermal capacity of the microlayer 

neglecting variation of temperature in the wall 

neglecting initial heat flux in the system 

assuming the microlayer to be “infinitely thick” 

neglecting the temperature drop at the liquid-vapour 
interface which arises from the finite rate of evaporation 

the ratlo of thermal properties 

of solid :rnd liquid 

dimensionless latent heat 

dimensionless resislauce to hc:it flow 

at the liquid lapour interface. 
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FIG. 1. Dimensionless reduction of microlayer thickness 
(1 - G+)against dimensionless time@+). Full lines represent 
the numerical results, crosses represent the approximate 
expression. (a) Cp = C-03, 1 = 50, y = 0. 

(b) d = 0.3, I = 5, y = 0. 
(c) # = 0.3,X? = 5, @2 = 1. 
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concerning the value ofh, and the associated accommodation 

coefficient. As discussed in [9], recent evidence from [Ill 

suggests that, for water, y is less than 0.1 for pressures 

exceeding 0.1 atm and for bubble life exceeding 0.1 ms. 

ANALYTIC SOLUTIONS AND APPROXIMATIONS 

Exact analytic solutions are obtainable in various simple 

or extreme cases. Three such cases have been considered 

in [9] and the solutions combined to give an approximate 

analytical expression for F. The three cases are : 
(i)Allowingformovementoftheinterface(i.e.iunrestricted) 

but taking 4 = 0, b2 = 1 and y = 0. The solution can be 

derived from [ 121 $11.2. and is 

1 2 
F = (1 - ii+) = 2C&+) r ._____- 

i, - 2/n ,/TI 
\,!(/ + ) 

where C is the solution of Cc” erfc C = l/(lJrr) and the 

approximation is within 1 per cent for I > 4. 

(ii) Allowing for variation of+ and p* but neglecting move- 

ment of the interface (i.e. i large) and taking 1’ = 0. The 

problem reduces to conduction through a composite slab, 

for which a solution is given in [ 1214 12.8, yielding 

F = (1 - S+) = ;t+ + $++) 

(iii) Allowing for variation of 4 and y but again neglecting 

movement of the interface and also taking 8’ = 1. This 

problem reduces to conduction through a single body, for 

which a solution is given in [ 121 3 2.7. yielding 

1 - &l + )‘) 
F = (1 - 6+) = $t+ + 

i. 

In all three cases the expression for F is valid only if it is less 

than 1. If the expression exceeds 1, then F is taken to be I. 
When these three analytic expressions and the numerical 

results are considered together, some suggestions arise: 

(a) the effect of the movement of the interface might be 

largely allowed for by writing (1 - 2/n) instead of i. 

(b) since y has most effect when t’ i y2 < 1, and 8’ has 

most effect when ti z 1 or greater. the effects of y and fl’ 

(together with d) might be largely allowed for by an expres- 

sion combining the square brackets of (ii) and the curved 
brackets of (iii). Thus the suggested approximate expression 
is : 

4 F=(l _rS+)=----f+ + 
( 

1 - 9(1 + 1’) 
_____ 

i - 2/K i. - 2/n 

x [i + 2(+) s$, @:)‘ ierfc $j] 

Agreement between this expression and the numerical 

solution is good provided 0 < fl’ < 1. and also good for 

larger values of fi’ until I;‘ exceeds about 0.3. A reasonably 

simple modification which improves agreement for F ; @Ii 
with /?* > 1 is to multiply the expression above by 

The resulting expression has been calculated for many 

cases throughout the range: results are shown as crosses on 

the graphs of Fig. I. As shown in these graphs and by more 

detailed consideration in [9], the approximation is generally 

within a few per cent. and always within + 15 per cent 

throughout the range 5 < 1 < 50.0 i 4 < 1. 0 < ;’ 4 0.3. 

all 8’. 

APPLICATION TO BUBBLE GROWTH RATE 

In [6] a general expression is derived for the volume (T/i) 

of vapour evaporated from the microlayer of a hemispherical 

bubble, assuming that its radius grows as a constant power 

of time (R = C,t”) and assuming also (after [3]) that 

6,, == Cz,‘(vt,). The expression is: 

where 

where ltl = CtPr and a transformation t’ = (t;t, -- 1) has 

been made. 

Evaluation of I is in general complicated by the variation 

of 6, with radius, causing 4 and 7 to depend on radius and 

hence on t’. These complications can be avoided by assuming 

that the effects of 4 and y are negligible (i.e. 4 = y = 0). 

If we also assume that evaporation of the microlayer is the 

solesourceofvapourforgrowthofthebubble,then V, = $nR3 
hence n = i and C, is determined, giving an expression for 

bubble growth: 

For these cases, with 4 = :’ = 0, n = 2, the integral I was 

evaluatedforsome values of1,j?‘, m in [6] and more generally 

in [9]. using the analytic expression derived above for F. 
Results are given in Table 1 below, in terms of the group 

{,$14(m)}. As shown in [3], p, 929. the effect of evaporation 

from the curved surface of the bubble is readily included. 

provided the liquid was initially at uniform temperature q. 
The effect is to add a second term 2,/(3/n)J,J(at) to the 

radius. 
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\ p2 1 10 co 1 10 cc Il. 
“\ 

4 0.85 0.97 l-07 0.76 085 l-00 12. 
1 0.83 1.07 1.13 0.76 1.01 148 
: 0.8 1 1.09 1.24 0.76 1.14 1-90 

-_ ____ .T-_ ~___ 

CUED/A-Thermo~R2, Cambridge University Eng. 
Dem. 11973). 
J. M. D. MERRY, Heat transfer in nucleate boiling- 
the microlayer, Ph.D. Thesis, Cambridge University 
(1969). 
A. F. MXLLS and R. A. SEBAN, The condensation 
coefftcient of water, Int. J. Heat Masf Transfer 10 
1815-1827 (1967). 
H. S. CARSLAW and J. C. JAEGER, Conduction of Heat 
in Solids. 2nd ed. Oxford University Press (1959). 

Analyses of this type fail when the effects of 4 and y ^ T 

APPENDIX 

Formulation in Non-dimensional Terms 

are taken into account, as it will no Ionger be valid to take a aking as nondimensional variables: 

R = C,t”. It appears that a less analytic approach will be 
needed, and a step-by-step numerical technique is probably T+ = T - =,, 

TW, - Tsa, 
t+ -_r”’ 

required, for which the analytic expression given above for 6; 

F may be of value. x1 x: =- x+ =xsk, \ ^ . a+ =p 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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% v% 4 

the equations, initial conditions and boundary conditions 
become : 

@T: a7y -=:- 
aqf at+ 

in liquid 

a2T+ aT+ 
dn:“=P2dT+ in solid 

T,+ = T$+ 

1 t 

fort+ > 0 

a7-: aT+ -=-s 
at x,+ = .x: = 0 

ax: ax: 

aT: 
-4 

ax:- 
at large x: 

J 

T,+ = 1 - q&+ o<x: <a+ 

T: = 1 f #x: att+ =0 

a+ = 1 

aT+ &,..$=_TL 
ax: 

atxr+ =S+ fort+ > 0 
Y 

where the four non-dimensional groups, b*, $, 1 and y are 
defined in the text. 


